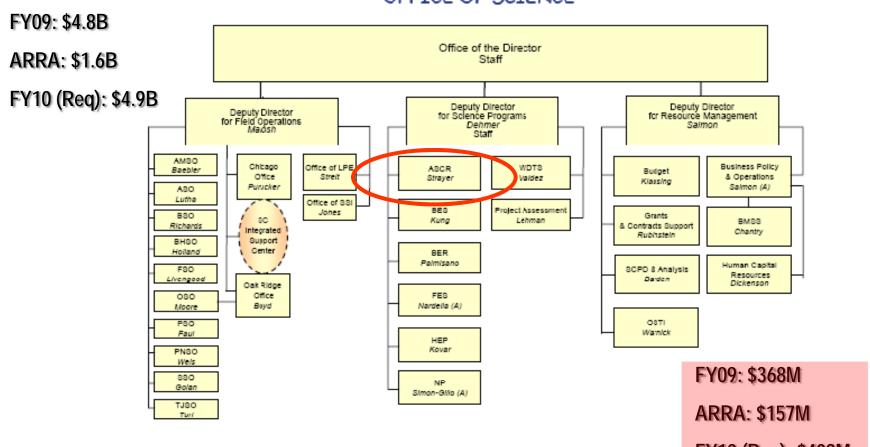


Strengthening America's Infrastructure Security

Making the Case for a Science-based Approach


NNSA-LDRD Symposium August 19, 2009 Washington, DC Walter M. Polansky Advanced Scientific Computing Research DOE Office of Science

Organization

Office of Science

OFFICE OF SCIENCE

FY10 (Req): \$409M

9/10/08

Vision

-- Advanced Scientific Computing Research --

Deliver Petascale Science Today

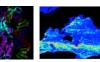
- Continue to make the Leadership Computing Facilities available to the very best science through Innovative and Novel Computational Impact on Theory and Experiment (INCITE).
- Continue to work with Pioneer Applications to deliver scientific results from day one.

Build the Intellectual Foundation for the Future

- Continue to nurture
 - World class mathematics and computer science research efforts
 - Applications critical to DOE missions through Scientific Discovery through Advanced Computing (SciDAC).
- Provide direct support for "bleeding-edge" research groups willing to take on the risk of working with emerging languages and operating systems.
- Foster innovative research at the ever blurring boundary between Applied Mathematics and Computer Science.

Realize the Promise of Extreme Scale

- Work with key science applications to identify opportunities for new research areas only possible through extreme scale computing.
- Support innovative research on advanced architectures and algorithms that accelerates the development of hardware and software that is well suited to extreme scale computational science.


SciDAC 2

Path to Petascale

Scientific Discovery

Applications

Networking

Accelerator science and simulation

- Climate modeling and simulation
- Fusion science
- Petabyte high-energy/nuclear physics
- Nuclear physics
- Radiation transport

- Astrophysics
- Computational Biology
- High-energy physics
- Materials science and chemistry
- QCD
- Turbulence
- Centers for Enabling Technology

- Groundwater reactive transport modeling and simulation

- Scientific Applications Partnerships

- Institutes (University-lead)

INCITE NERSC /

Leadership Computing-ANL

556 TF IBM BG/P

Leadership Computing-ORNL

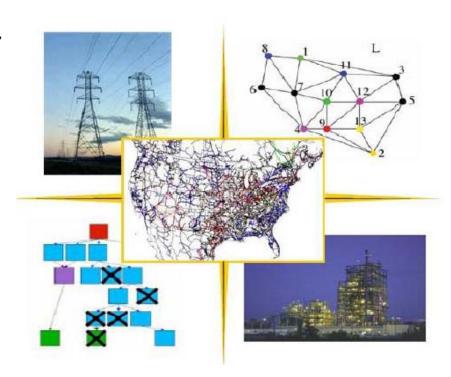
263 TF Cray XT4 → 1 PF Cray XT5

Production Computing-NERSC

104 TF Cray XT4 → ~360 TF Cray XT4

ESnet

On path toward Dual rings 40Gbps/ 10 Gbps fault


tolerant

Infrastructure

Electric power grid:

- coal, hydro, nuclear, wind/solar power generation
- Substations and transmission lines
- Supervisory control and data acquisition (SCADA) systems
- Open-science research information networks:
 - remote access to high-performance computing facilities;
 - massive data movement;
 - international scientific collaborations;
 - collaboratories;
 - cloud computing
- National security assets

Enormous, distributed, complex, and heterogenous!

What about Cyber-Security?

- Solutions are proprietary, provided in response only to known vulnerabilities or exploits.
- Every network component- assumed to be understood and initially trusted
- Users drive network growth and evolution (e.g. home wireless routers; "renewable" energy generation),
- Not understanding complex networks means we cannot:
 - Define the 'normal' operation envelope;
 - Rationally optimize performance;
 - Safeguard against abnormal operations.

Science-based understanding and predictive capabilities could lead to a Sustainable Solution

So you Want to Transmit a Petabyte?

reference: see http://fasterdata.es.net/BandwidthRequirements.html

Assuming ideal transmission:

Speed	1 Mbps	50 Mbps	1 Gbps	10 Gbps	100 Gbps
Time	272 years	5.5 years	3 months	9.7 days	1 day

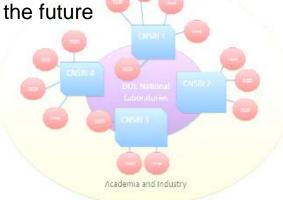
More likely for scientific data movement

- The data may be in transit for a long time
- The "peering arrangements" are numerous and heterogeneous
- Hops are not predetermined

How can delivery be assured and guaranteed?

Hardware Landscape

- Commercial, off the shelf
- Unknown supply chain
- Proprietary manufacturing processes
- Integrity of Firmware (e.g. BIOS) accepted by default


Grand Challenge

 Σ (untrusted components) = Trusted System

Solving the Puzzle -- New Research Activity --

- Emphasis on interconnected systems operating *within purview of DOE*: computer networks, electric power grid, critical infrastructures
- Areas of interest include
 - Real-world, real-time data generated by complex, distributed, interconnected systems and associated novel data analysis techniques and methods for advanced situational awareness
 - Modeling and simulation of the key properties and emergent behavior on large-scale complex distributed interconnected systems
 - Mathematical methods for modeling and analysis of the dynamics and evolution of large-scale, complex, distributed interconnected systems
- \$3.5M/year
- Lab-based projects:
 - foundation for engaging broad research community in the future
- Anticipate 5-7 awards

